Category: offshore wind

Capacity factors at Danish offshore wind farms

Posted by – 2019/03/01

monthlygenHere are the average capacity factors of every Danish offshore wind farm, newly updated to include data to the end of 2018. Compare these with the capacity factors for German, and UK, and Belgian offshore wind farms.

Read more…

UK offshore wind capacity factors

Posted by – 2019/03/01

Here are the average capacity factors for offshore wind farms in UK waters, newly updated to include data to the end of December 2018 (though there are still some figures to come through for the last couple of months of last year, for the smaller windfarms). And you might be interested in comparing these with the capacity factors and load-duration curves for Belgium, Denmark and Germany.

Read more…

Germany’s offshore wind capacity factors

Posted by – 2019/03/01

Previously I’ve provided the figures for Danish offshore windfarms, for the UK , and for Belgium too. Here are the numbers for the larger German offshore windfarms. The ones shown here are the only ones I’ve been able to get detailed data for, so far, and my main source is no longer freely available, so updates here will be very limited. If you know of additional data sources, please let me know on Twitter.

German offshore wind capacity factors

All numbers are to the end of August 2018. Analysis by
Age (y)Installed
elec. gen.
Power per
unit area
spanned (W/m2)
Rolling 12-month
capacity factors
Total40.2%39.2%312822 7072.9
Amrumbank West41.9%42.4%2.93023 0813.9
Bard Offshore 136.9%34.5%1.44001 6792.3
Borkum Riffgrund I35.4%39.0%2.93123 0833.4
DanTysk46.0%48.2%3.32883 4162.1
Gode Wind I38.9%37.8%1.33301 3753.1
Gode Wind II39.2%37.9%1.32521 0533.2
Nordsee One27.4%0.7331534
Nordsee Ost 133.7%34.8%3.31441 4452.8
Nordsee Ost 235.0%35.4%3.31441 4782.8
Sandbank46.4%44.5%1.62881 7942.7
Windpark Baltic 1 & 244.6%45.0%2.83363 7674.1

Load duration curves

I’ve constructed for each of the offshore windfarms for which there is detailed hourly data. Use the pause and play buttons to stop and start the sequential display of curves. Click on the windfarm name in the legend to toggle the display of that farm’s curve.


Note that for each individual windfarm, its curve is based on data starting from the date that the windfarm was fully commissioned, and the windfarm’s age is calculated as starting at that date. There is one exception: the Bard Offshore Windfarm was fully commissioned in August 2013, but detailed data on its generation is only available from spring 2017 onwards – so the “age” shown for this windfarm is the age of the oldest available data, not the age of the windfarm itself.

The numbers for DanTysk did look strange: I had to clean a stretch of five months of data that was clearly wrong. A small kink remains in its load duration curve; this may be an artefact of a small amount of remaining problematic data.

Windfarms less than a year old are excluded from the calculations of the power density per unit area spanned. The figure for total power density is a weighted average of the windfarms that are a year older or more: this is weighted by size, but not by time. So a windfarm that’s twice as large contributes twice as much to the total; whereas a windfarm that’s twice as old, does not.

A plurality of wind: a landmark on the road to cleaner electricity

Posted by – 2016/01/11

On 17 December 2015 Britain passed a new landmark on the road to cleaner electricity: for four hours, from 03.00 to 07.00, the grid had a plurality of wind: wind was the largest generation type on the grid: there was more wind generation than generation in Britain from gas, or from coal, or from nuclear, or any other domestic source. That was the case for the four hours as a whole, and for each half-hour within that four-hour period.

Read more…

100% renewables: there’s more than enough space

Posted by – 2015/12/15

Is land area a barrier, or a significant constraint, to achieving 100% renewables?

Read more…

Wind records in Britain

Posted by – 2015/01/01

It’s been a remarkable few months for wind generation in Britain, Feb 2014 – Jan 2015, and the last of those two months in particular. Several records were broken, and re-broken.

You can see the live British grid data, including wind generation, here; and here’s a version for mobiles (cellphones) and other small-screen devices.

February 2014 saw the highest monthly average metered wind power generation that Britain’s ever achieved: in that month, average generation from metered windfarms was 4.09 GW.

The half-hour starting at 06.00 on the morning of 18 October 2014 saw the highest percentage contribution of wind (penetration) to total demand: 23.5% from metered windfarms; 32.9% from all windfarms.

The half-hour starting at 19.30 on 9 December 2014 saw the highest half-hourly wind generation: 6.80 GW from metered windfarms; 9.42 GW from all windfarms.

And until January 2015, December 2014 also had the highest amount of wind-generated electricity of any month: 3.90 TWh (of which a record 2.85 TWh was from metered windfarms); and the highest monthly contribution from wind to total demand – 13.9% from all windfarms (the highest contribution from metered windfarms was 10.5%, in February 2014). But January 2015 outdid the preceeding month, with 14.4% of demand being met by metered and embedded wind; 4.13 TWh of wind in total, which was equivalent to an average power of 5.56 GW; and 2.95 TWh from the metered windfarms.

Records for electricity generation from wind in Britain

analysis by EnergyNumbers.infoAll windfarmsMetered windfarms only
MonthlyMax wind penetration14.4 %Jan 201510.5 %Feb 2014
Maximum energy4.13 TWhJan 20152.95 TWhJan 2015
Max average power5.56 GWJan 20154.09 GWFeb 2014
Half-hourlyMax wind penetration32.9 %2014-10-18 06.00-06.3023.5 %2014-10-18 06.00-06.30
Max average power9.42 GW2014-12-09 19.30-20.006.80 GW2014-12-09 19.30-20.00

(thanks to BMReports and Elexon for the raw data I used for this analysis)

Watching the ships (part 3): Humber Gateway and Westermost Rough offshore wind farms

Posted by – 2014/08/27

There are two windfarms being built right now near the mouth of the Humber Estuary: Humber Gateway and Westermost Rough.

Here’s a map of the ships serving the windfarms.
Read more…

2050 Calculator

Posted by – 2012/06/12

Introducing the EnergyNumbers 2050 Pathways calculator

The DECC 2050 calculator is a good start at producing a toy model to give some ideas of the trade-offs, and approximate orders of magnitude of costs involved in converting Britain’s energy systems into a low-carbon system.

But it has its flaws.

So I’ve revised some of the model’s weakest parts, and re-released it. Here’s the EnergyNumbers 2050 Pathways calculator

A summary of the changes (most recent, first)

  • Added a new option to change the amount of fossil-fuels (coal, gas, oil) extracted in the UK. This option exists in the DECC spreadsheet, but wasn’t previously available in the web interface.
  • Added a whole new section with performance against national and international targets. In the top-left corner of every page, you’ll find indicators showing progress against targets. Click on them to read an explanation of each target, and how well the selected pathway performs against each.
  • Change nuclear level 1 to phaseout by 2020; bumped all the other levels up by one (so old level 1 is new level 2; old level 3 is new level 4), and updated all the “expert” pathways accordingly. Old level 4 wasn’t plausible, wasn’t used in any of the “expert” pathways, and so has been removed
  • Added estimated damage costs for greeenhouse gases: low £70/tCO2e; medium £100/tCO2e; high £200/tCO2e
  • Added estimates of nuclear liability costs: low 0p/kWh; medium 11p/kWh; high 100p/kWh
  • The choice of car and van techology, between fuel cells and electric batteries, is a category scale (A,B,C,D), not ascending order of difficulty (1-4)
  • Ensure coal capacity has a floor of zero
  • Selecting biomass plant will not drive up coal use
  • Updated nuclear build costs: high £4.548/Wp rising to £5.072/Wp; medium £3.50/Wp; low £2.478/Wp
  • Onshore wind, level 4 upgraded to hit 50GWp by 2020 and stay steady
  • Offshore wind fixed-foundation, level 4, from 2020 onwards, upgraded to 10GWp annual installation rate


Live mapping of ships building the London Array

Posted by – 2012/04/13

The map below shows the live positions of ships working on the London Array offshore wind farm, Phase 1, off the coasts of Kent and Essex. It’s almost like sitting on the dock of the bay, watching the ships roll in and roll out again.Read more…

Surpassing Matilda: record-breaking Danish wind turbines

Posted by – 2010/07/21

By 2008, Matilda was the world’s most productive wind turbine, having generated 61.4 GWh of energy by the end of its life.

But by the end of March 2010, this record had been broken four times over, Read more…

Live mapping of ships building Walney offshore windfarm

Posted by – 2010/07/20

The map below shows the live positions of ships working on the Walney offshore wind farm, off the coast of Blackpool and Barrow-in-Furness. It’s not as good as sitting on the dock of the bay, watching the ships roll in and roll out again, but it’s better than a slap in the face with a wet cod.Read more…